Recursive Types in Kleisli Categories

نویسنده

  • Alex K. Simpson
چکیده

We show that an enriched version of Freyd's principle of versality holds in the Kleisli category of a commutative strong monad with xed-point object. This gives a general categorical setting in which it is possible to model recursive types involving the usual datatype constructors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of the Kleisli and Eilenberg-Moore 2-adjunctions

In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...

متن کامل

From Coalgebraic to Monoidal Traces

The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give rise to traced monoidal structure in those Kleisli categories, with finite coproducts as monoidal structure. At the heart of the matter lie partially additive monads inducing partially additive structure in their Kleisli categories. By applying the standard “Int” construction one obtains compact clo...

متن کامل

Partial Recursive Functions and Finality

We seek universal categorical conditions ensuring the representability of all partial recursive functions. In the category Pfn of sets and partial functions, the natural numbers provide both an initial algebra and a final coalgebra for the functor 1 + −. We recount how finality yields closure of the partial functions on natural numbers under Kleene’s μ-recursion scheme. Noting that Pfn is not c...

متن کامل

Fully Complete Models for ML Polymorphic Types

We present an axiomatic characterization of models fully-complete for ML-polymorphic types of system F. This axiomatization is given for hyperdoctrine models, which arise as adjoint models, i.e. co-Kleisli categories of suitable linear categories. Examples of adjoint models can be obtained from categories of Partial Equivalence Relations over Linear Combinatory Algebras. We show that a special ...

متن کامل

Kleisli and Eilenberg-Moore Constructions as Parts of Biadjoint Situations

We consider monads over varying categories, and by defining the morphisms of Kleisli and of Eilenberg-Moore from a monad to another and the appropriate transformations (2-cells) between morphisms of Kleisli and between morphisms of Eilenberg-Moore, we obtain two 2-categories MndKl and MndEM. Then we prove that MndKl and MndEM are, respectively, 2-isomorphic to the conjugate of Kl and to the tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992